The wind-averaged aerodynamic drag of competitive time trial cycling helmets

Len Brownlie^{a*}, Peter Ostafichuk^b, Erik Tews^c, Hil Muller^c, Eamon Briggs^c and Kevin Franks^c

^aAerosportsresearch.com, 5761 Seaview Place West Vancouver, B.C., V7W 1R7, Canada ^bUniversity of British Columbia Department of Mechanical Engineering, 6250 Applied Sciences Lane, Vancouver, B.C., V6T 1Z4, Canada

^CEastonBell Sports Inc., 5550 Scotts Valley Drive, Scotts Valley, California, 95066, USA

Abstract

This paper documents a wind tunnel test program that measured the aerodynamic drag (F_d) , lift (F_l) and side force (F_s) of 12 contemporary time trial (TT) helmets at yaw angles of 0 to 15°. F_d measurements at yaw were subjected to a novel analysis technique adapted from the automotive fuel efficiency literature to provide a single wind averaged drag at a velocity (V) of 14.75 m sec⁻¹ (53 Kph or 33 mph). Ranked wind averaged drag measurements of TT helmets provide a simple performance index and it is recommended that this analytical procedure be adopted by the bike industry to permit uniform F_d comparisons of helmets, wheels, frames and other components that are subjected to yaw angle wind tunnel tests.